9. Condensed Heterotricycles. Synthesis and Reactions of &Fused 1(2H)-Isoquinolinones with Unusual Enaminic Properties')

by **Kuppuswamy Nagarajan*)*, Vunnam R. Rao, Rashmi K. Shah,** and **Sharada J. Shenoy**

Hindustan Ciha-Geigy Ltd., Research Centre, Bombay 400063, India

and **Hans Fritz*, Wilhelm J. Richter*,** and **Dieter Muller**

Central Function Research, *Ciba-Geigy AG*, CH-4002 Basel

(14.IX. 87)

Homophthalic acid (1) undergoes reaction with $1,2-$, 1,3-, and 1,4-diamines to give condensed $1(2H)$ -isoquinolinones like **2,4, 13,** and **25** which exhibit marked enamine character. These are attacked by electrophiles at the Nor *C* terminus. Some notable reactions of imidazoisoquinolone **2** are those with maleic and acrylic acids to form the tetracycles **48** and **51,** respectively. With propiolic acid, **5** underwent an interesting reaction to form the benzimidazonaphthyridine **53. An** equally interesting behaviour was elicited from **2** in its reaction with formaldehyde, when in addition to the expected methylene-bridged molecule **59,** the novel spiro derivative **60** was formed by the dimerisation of a presumed azadiene intermediate **63.**

1. Introduction. – Condensed $1(2H)$ -isoquinolinone systems of type 2 have been synthesized by the reaction of diamines with homophthalic acid **(1)** [1-31, homophthalic anhydride [4], or o -cyanomethylbenzoic acid *[5]* [6]. Diverse biological properties such as antiinflammation and analgesia have been claimed for these compounds [2] [3]. Their chemical profile has not been investigated widely, except for our initial observations on their marked enaminic character [11. These compounds are formally ketene aminals, but since one of the basic N-atoms is acylated, they are heterocyclic enamines for which few parallels are available in enamine literature [7-111. Pursuing our earlier chemistry [l], we have enlarged the scope of our synthesis to encompass many new tricyclic and tetracyclic systems and uncovered many interesting reactions, noteworthy among which are those of the imidazoisoquinolinone **2** with propiolic acid and formaldehyde to form **53** and **60,** respectively. We publish in this full paper details of syntheses and reactions of these condensed isocarbostyrils.

2. Syntheses. ~ Condensation of homophthalic acid **(1)** with 2 mol-equiv. of ethylenediamine in σ -dichlorobenzene under reflux for 6 h gave 2,3-dihydroimidazo[1,2b]isoquinolin-5(1H)-one (2) in 91% yield *(Scheme 1)*.

Structure **2** was favoured over the alternative imine structure **2a** on the basis of spectral data: 'H-NMR ((D,)DMSO): 3.58 *(t* with fine structure, 2 H-C(2)); 4.13 *(t* with fine structure, 2H-C(3)); 5.55 (s, H-C(l0)); 6.70 (br. s, NH); 6.80-7.60 *(m,* H-C(7), H-C(8), H-C(9)); 8.00 *(d* with fine structure, H-C(6)); treatment of the solution with D₂O for 17 h led to disappearance of signals at 5.55 and 6.70 ppm. IR (nujol): 3220, 1680, 1630, 1590 cm-'. UV (EtOH): 231 (4.48), 292 (infl. 4.18), 300 (4.26), 368 (3.60) nm. **As** expected for enamines [7], protonation

^{&#}x27;) Contribution No. 822 from *Hindusfan Ciba-Geigy Ltd.,* Research Centre.

^{2,} Present address for correspondence: R&D Centre, *Searle (India) Limited*, Thane 400 601, India.

of **2** occurred to produce salts with the iminium structure **2b:** 'H-NMR (CF,COOH): 4.50 *(m,* 2 H-C(2), 2 **H-C(3))**; **4.67** (br. *s*, 2 H-C(10)); 7.40-8.00 *(m,* H-C(7), H-C(8), H-C(9)); 8.23 (br. *d,* H-C(6)); 10.42 (br. *s*, NH+). IR (nujol; chloride): 1730, 1670, 1640 cm-'. UV (2N **HCI): 233** (3.99), 240 (3.97), 264 (4.08) nm.

The condensation of homophthalic acid with N-methylethylenediamine, propane-1,3-diamine and its N-methyl as well as 2-hydroxy derivatives and of 4-chlorohomophthalic acid **(7)** and 4-aminohomophthalic acid **(8)** with ethylenediamine proceeded in high yields to afford fused 1(2H)-isoquinolinones **3, 4, 5, 6, 9,** and **10,** respectively. Yields of condensation were considerably less (42%) , when N-cyclohexyl $(\rightarrow 11)$ and N -(3-aminopropyl)propane-1,3-diamine $(\rightarrow 12)$ were used with 1. The yield of condensed isocarbostyril 13 using 1 and butane-1,4-diamine dropped to 21%, while with pentane-l,5-diamine, the only product isolated in scanty yield (8 *YO)* was the bis[homophthalimide] **14.**

In their $H-MMR$ spectra, the enamine proton of the fused $1(2H)$ -isoquinolinones 3-6 and 9-13 appeared at 5.55±0.35 ppm. Their UV spectra (MeOH) exhibited characteristic maxima around 308 ± 8 and 365 ± 10 nm which were replaced by one at *ca.* 260 nm in 2N HCl. Other physical data are presented in *Table 1*.

ï

13.37 *2*

The 4-nitrohomophthalic acid **(15)** and ethylenediamine afforded, under the usual conditions, the imidazole **16** in 25% yield. The structure rested on analytical and 'H-NMR data (s at 2.55 ppm for CH,Ar). Presumably, the formation of **16** is triggered by base-induced decarboxylation of the p-nitrophenyl-acetate ion followed by imidazoline formation at the surviving carboxylic centre.

The formation of condensed 1(2H)-isoquinolinones of the type **17** by reaction of homophthalic acid **(1)** with 2-aminoethanol and 2-aminoethanthiol was not observed in refluxing o-dichlorobenzene, although other reaction conditions have afforded them [2] *[5].* Instead, we isolated only the homophthalimides **18** and **19** in yields of 50 and 19%, respectively. Semicarbazide and **1** could conceivably give **20,** but the product obtained by us in 32% yield was the N,N'-bi[homophthalimide] 21 $(C_{18}H_{12}N_2O_4, M^+$ 320), formed presumably from the initially produced N-ureidohomophthalimide *via* N-aminohomophthalimide (loss of HCNO).

The facile formation of condensed $1(2H)$ -isoquinolinones from homophthalic acid could be exploited to construct tetracyclic systems. Thus, **1** and 2-(aminomethy1) piperidine **(22)** afforded **23** in 14% yield *(Scheme I).* The yield of the homologue **25** rose to 85 % using 2-(2-aminoethyl)piperidine **(24).** Structures **23** and **25** were supported by the presence of the typical signal due to the enaminic proton in their 'H-NMR spectra (5.25 and 5.62 ppm, resp.).

3. Reactions of Condensed 1(2H)-Isoquinolinones. $- 3.1$. *At N-Terminus.* Compound **2** was used as substrate for all reactions described in this section. Reaction of **2** with acid chloride or anhydride afforded generally the N-derivative, as revealed by the absence of NH absorption in the IR spectrum and presence in the 'H-NMR spectrum of a s due to the enaminic proton at C(10) at 6.80-7.00 ppm (see **26-28).** Products with alkyl, aryl, and sulfonyl isocyanates are formulated similarly, as also those from sulfonyl chlorides (see **29-34).** Unlike reaction with classical enamines, methanesulfonyl chloride and **2** in the presence of $Et₁N$ did not afford the cycloaddition product with methylenesulfene [7] [8]; only the 'normal' derivative **29** was formed. The yields of products **2634** were moderate, except with butylisocyanate and 3,4,5-trimethoxybenzoyl chloride which gave only low yields *(Table 2).* Careful workup of the crude mixture from the reaction of **2** with benzoyl chloride afforded, in addition to the colourless N-benzoyl derivative **27** as the major product $(6.9 \text{ ppm } (H-C(10))$, a minor isomer, the 10-benzoyl derivative 35 $(8.55 \text{ ppm }$

(NH); 3320 cm-'). Obviously, the N-benzoyl product reported earlier **[4]** is a mixture **27/35.** p-Toluenesulfonyl chloride also gave, in addition to **30** (6.70 ppm (H-C(10)), the C-sulfonyl isomer 36 (7.85 ppm (NH); 3380 cm⁻¹). The N-acyl derivatives of 2 were also differentiated generally from the $C(10)$ derivatives with respect to the signals due to protons at $C(2)$ and $C(3)$ in the 'H-NMR spectra: in the former, these were pseudo-s centered at *ca.* 4 ppm, while in the latter, they presented a frank A_2B_2 pattern centered at *ca.* 4.1 ppm. Reaction of **2** with p-nitrobenzenesulfonyl chloride gave a C(10) derivative discussed in 3.2.2. While **2** was unreactive in the form of its hydrochloride towards KOCN and cyanamide, dicyandiamide gave **37.** Its poor solubility in NMR solvents precluded spectroscopic confirmation of the site of attack.

3.2 *Reactions at C-Terminus.* 3.2.1. *Alkylations.* Imidazoisoquinolinone **2** was unaffected by benzyl and ally1 bromides in refluxing THF, but in the presence of K,CO, **2** afforded derivatives 38 and 39 substituted at $C(10)$ in 72 and 25% yield, respectively, as

shown by the IR (NH at *ca.* 3250 cm^{-1}) and ¹H-NMR data (no H-C(10)). Treatment of 1 **-methylpyrimidoisoquinolinone 5** with Me1 and benzyl bromide afforded again the 11-substituted products as the salts $({}^1H\text{-}NMR$: no enamine $H-C(11)$). The methyl derivative could have either of the structures **40** or **42,** and the benzylated product **41** or **43.** The 'H-NMR spectra showed that **42** and **41** were predominating *(ca.* 70%).

In the ¹H-NMR ((D₆)DMSO) of **42** *(ca.* 70%), CH₃-C(11) appeared as *d* at 1.62 ppm (*J* = 7 Hz), H-C(11) as *q* at 5.03 ppm ($J = 7$ Hz), and CH₃-N⁺ as *s* at 3.70 ppm. The relevant signals for species 40 could not be located in the midst of other signals. The ¹H-NMR (D₂O) of the benzyl product showed a s at 4.60 ppm for CH₂-C(11) of 41 (70%). The presence of the second species 43 was indicated by the presence of a *I* ($J = 5$ Hz) for H-C(11) at 5.20 ppm. These conflicting observations may in part be explained as being due to the use of different solvents; unfortunately, the solvents could not be switched, because of poor solubility **of** the substances in these solvents.

The base from the hydrobromide salt of the benzyl derivative could be liberated quantitatively. Its NMR spectrum was in total accordance with the expected structure **44** $(CH, -C(11)$ as *s* at 4.15 ppm). Surprisingly, 38 was a weak base and could not be induced to give a stable HCl or HI salt, although its UV spectra in MeOH and 2N HCI strongly resembled those of **2.**

Attempts to bridge the N- and C-termini of **2** with dichloroacetone and 1,3-dibromopropane were unsuccessful.

3.2.2. *Reaction with p-Nitrobenzenesulfonyl Chloride.* Interaction of **2** with ths reagent in the presence of Et₃N gave, in 10% yield, a product formulated as the 10- $(p$ -nitropheny1)thio derivative **45.**

The IR spectrum **(KBr)** showed an NH band at 3450 cm⁻¹; the strong band due to the symmetric stretching of an SO₂ group was lacking at 1120–1160 cm⁻¹. ¹H- (400 MHz) and ¹³C-NMR spectra (100.6 MHz) are also fully compatible with structure **45,** as evidenced by the chemical shifts given in the *Exper. Purr.* The FD-MS showed mainly a M^+ signal at m/z 339 with only a small signal at m/z 371 which is likely to be due to an impurity (sulfone). In addition to this last impurity, the EI-MS exhibited the M^+ signal at m/z 339 and a prominent fragment ion at *m/z* 217, corresponding to the loss of the nitrophenyl radical. **A** pronounced metastable peak *(m/z ca.* 139) confirmed the direct genesis of the m/z 217 fragment ion from M^+ . High-resolution MS gave the correct composition of M^+ as C₁₇H₁₃N₃O₃S (found 339.0677; calc. 339.0677) and of the major fragment as C₁₁H₉N₂OS (found 217.0453; calc. 217.0435).

The anomalous formation of **45,** albeit in very low yield, has no parallel to our knowledge in enamine literature. It could possibly arise from the primary 10-sulfonyl derivative by an intermolecular reduction/oxidation process.

Deliberate attempts to dehydrogenate **2** to the 2,3-didehydro derivative using nitrobenzene or Pd/C were unsuccessful.

3.2.3. *Reaction with Isothiocyanate and Isocyanate.* In contrast to phenylisocyanate, phenylisothiocyanate attacked **2** at C(l0) to afford **46** in 42% yield ('H-NMR: no $H-C(10)$). The 1-methyl derivative 3 is necessarily vulnerable at $C(10)$ towards electrophilic reagents. However, it was unreactive towards many reagents studied - methanesulfonyl chloride and methyl- and phenylisocyanates. With *p* -chlorophenylisocyanate, however, the expected product **47** was obtained in 37% yield.

3.2.4. *Reactions with Electron-Deficient Olefins.* The marked enaminic properties of **2** were discovered accidentally when a maleate salt was sought to be prepared thereof. Heating an equimolar mixture of 2 and maleic acid in EtOH for $\frac{1}{2}$ h resulted in the formation of the tetracyclic lactam **48** in 70% yield.

The structure was supported, besides by elemental analysis, by the absence of $^1H\text{-NMR}$ signals of the enaminic proton and of the vinyl protons of maleic acid, and by the IR spectrum (no band due to NH; bands at 1710, 1700 and 1680 cm⁻¹ due to C=O). The alternative formulation **49** was ruled out since the ¹H-NMR showed the presence of only *one* aromatic proton at low field (8.20 ppm).

Maleic acid and 4 gave similarly 50, although only in 15% yield. Acrylic acid reacted likewise with **2** to form the tetracycle **51;** acrylonitrile and **2,** on the other hand, gave only the 10-cyanoethyl derivative **52** (IR: CN band; 'H-NMR: no H-C(10)).

We then studied the reaction of **2** with propiolic acid in the hope of preparing a didehydro derivative of **51.** The reaction was carried out with an excess of the acid in EtOH under reflux for 10 h. The yellow product obtained in *ca.* 80% yield was neither the simple adduct nor the resultant, expected lactam. From the analytical and spectral data, structure **53** could be unambiguously deduced.

Analytical and MS data pointed to a molecular formula $C_{26}H_{24}N_4O_2$. The IR spectrum had bands at 3380, 1680, 1620, and 1590 cm-l. The UV spectrum (MeOH) showed the presence of *tw* units per molecule of the chromophore present in **2.** The 400-MHz 'H-NMR spectrum of a saturated solution in CDCI, *(Fig. I)* showed

Fig. 1.400-MHz^{l}H-NMR spectrum of 53 in CDCl₃(10 mg/ml). The signals at 7.26 and 1.70 ppm stem from CHCl₃ and H,O. The signal at 6.0 ppm corresponds to an NH.

C/H	$\delta_{\rm C}$	$\delta_{\rm H}$	C/H	$\delta_{\rm C}$	$\delta_{\rm H}$
C(5)	160.60	--	$H-C(8a)$ or $H-C(5'a)$	121.08	-
C(8)	160.17		$H - C(12)$	120.65	7.31
C(10'a)	144.97		$H - C(9')$	118.79	7.42
C(12c)	143.07		C(12b)	(94.43	
C(9'a)	138.43		C(10')	86.67	÷
C(12a)	138.10	-	$H - C(3)$	50.32	4.63
$H - C(8')$	132.67	17.56	$2H - C(5)$	48.90	3.61, 3.07
$H - C(11)$	132.19	7.52	$2H - C(3')$	43.57	4.26, 4.30
$H-C(6')$	128.30	8.37	$2H - C(6)$	42.94	4.40, 3.95
$H - C(9)$	127.86	8.28	$2H - C(2')$	(42.94)	3.81
$H-C(7)$ or $H-C(10)$	122.59	7.20	$2H-C(2)$	34.50	2.46, 1.94
$C(5'a)$ or $C(8a)$	122.30	$\overline{}$	$H - C(1)$	25.14	3.10
$H - C(10)$ or $H - C(7')$	122.10	7.20	$CH3-C(1)$	22.98	1.41

Table 3. *I3C- and 'H-NMR Chemical Shifts 0f53~)*

^a) δ Values in ppm at 100.6 MHz (¹³C) and 400.1 MHz (¹H) of a saturated solution *(ca.* 10 mg/ml) in CDCl₁ at 25"; internal standard TMS; in addition to the 'H-NMR signals given, there is a br. **s** at 6.0 ppm for *1* NH.

signals for 2 sets of 4 aromatic protons, for 1 NH group, and for 2 NCH₂CH₂N fragments. Additional signals revealed the presence of the structural element CHCH₂CHCH₃. In the broad-band-decoupled 100.6-MHz¹³C-NMR spectrum, 25 **s** were observed, indicating one accidental overlap of 2 sat 42.94 ppm (see *Table 3* for chemical shifts and assignments). The relative configuration at C(1) and C(3) followed from H,H coupling constants and NOE difference experiments: the ${}^{3}J(2,3)$ were 11.5 and 2.5 Hz, indicating a quasi-axial disposition of H-C(3), and ${}^{3}J(1,2)$ were 5.5 and 1.5 Hz, compatible with a quasi-equatorial position of H-C(1). Irradiation of the CH₃-C(1) signal at 1.41 ppm led to an NOE enhancement for the signals of $H-C(1)$, $H-C(3)$, and the equatorial $H-C(2)$. These results are best compatible with a sofa conformation **58** of the six-membered ring D , in which the CH₃ group adopts a quasi-axial position. The NOE experiments also allowed to differentiate between the signals for $H-C(9')$ and $H-C(12)$ at 7.42 and 7.31 ppm: irradiation of the CH₃ signal or the signal of $H-C(1)$ resulted in a NOE at 7.31 ppm, thus allowing to assign this signal to $H-C(12)$.

The MS of 53 showed the M^+ at m/z 424 in addition to prominent fragments at m/z 238, 223, 213, and 186. *Scheme* 2 presents plausible fragmentation pathways.

A plausible mechanism for the formation of **53** is shown in *Scheme 3.* We believe that the initial adduct **54** of **2** with propiolic acid tautomerises to **55** which decarboxylates to form the dienamine **56,** existing in equilibrium with the vinyl imine **57.** A 4+2 addition between **56** and **57,** with the vinyl group of the former as the dienophile and the azadiene system in the latter as diene would lead to the production of **53.** In accordance with this rationalization, we have noted that the reaction of **2** with acetaldehyde in dioxane produces **53,** although in low yield, presumably through the intermediacy of **57.**

3.2.5. *Reaction with Formaldehyde.* An equally interesting and unexpected reaction of **2** was the one with formaldehyde. In an attempt to run a *Munnich* reaction at **C(** lo), **2** was treated with formalin and *2* mol-equiv. of morpholine at 70" for 2 h. Upon cooling, a product was obtained while evaporation of the filtrate gave another, each corresponding in weight to roughly 50% of the starting material. Incorporation of morpholine did not occur; both compounds could be obtained by using formaldehyde alone. Their high $c = 0$

 $H - 6$ ^T

.H®

57

 $\sum_{i=1}^{\infty}$

 $\frac{1}{2}$

58

Н

 H^{\star}

 H_1

Ŗ

 $\frac{1}{2}$ _{CH₃}

۵Ï.

Scheme 4

 \circ *60*

m.p.'s suggested that they had incorporated two units of **2,** and their spectral analysis allowed the assignment of structure *59* to the former and **60** to the latter *(Scheme 4).*

Compound 59 had analytical values corresponding to $C_{23}H_{20}N_4O_2$. The UV spectrum (MeOH) suggested the presence of *two* units per molecule of the chromophore present in **2.** The IR spectrum had bands at 3400, 3200, 1660, and 1600 cm-I. The FD-MS showed *Mf'* at *m/z* 384 and a (low-abundance) doubly charged molecular ion M^{++} at m/z 192; at elevated emitter temperatures, major fragment ions at m/z 186 and 198 were also observed corresponding to complementary portions of the molecule *(Scheme 5)*. In the EI-MS, no M^+ but only m/z 186 and 198 appeared. The ¹H-NMR spectrum (400 MHz) and ¹³C-NMR spectrum (100.6 MHz) in (D_6) DMSO confirmed the symmetry of the molecule. Detailed assignments are presented in *Table 4.*

Compound 60 had analytical values corresponding to $C_{24}H_{20}N_4O_2$. The UV spectrum showed the presence of only one unit of the chromophore in **2** in contrast to *59.* The 1R spectrum had no bands for NH but showed absorption at 1660, 1630, 1610, and 1590 cm⁻¹. Only M^+ at m/z 396 and its doubly charged counterpart M^{++} at 198 appeared in the FD-MS. Indicating a higher stability towards fragmentation in comparison to *59,* the **EI-MS** of this spirocyclic, *i.e.* doubly bridged, dimer **60** also exhibited a pronounced *M"* at *m/z* 396 (composition confirmed by HR-MS). Major fragments were observed at m/z 210 (C₁₃H₁₀N₂O) and 186 (C₁₁H₁₀N₂O; *Scheme 5*). The former requires the presence of a C-C bond linking the 2 methylene groups introduced by CH,O. The structural

^a) δ Values in ppm at 100.6 (¹³C) and 400.1 (¹H) MHz of a (D₆)DMSO solution *(ca.* 3 mg/ml) at 25°. Internal standard TMS.

Fig. 2. *400-MHz 'H-NMR spectrum of60 in CDC!,* (10 mg/ml). The **s** at 7.26 (CHCI,) and 2.16 ppm stem from the solvent.

alternatives61 and *62 (Scheme 4)* that would arise from ajuncture of2 molecules of2 *uiu* two separate CH, bridges are, therefore, immediately ruled out.

The most compelling evidence in favour of structure *60* came from 'H-, "C-, and "N-NMR studies at 400, 100.6, and 40.5 MHz, respectively. The ¹H-NMR spectrum (1% solution, CDCl₃; *Fig.2* and *Table 5*) showed signals for 3 CH₂CH₂ fragments, 2 of which must belong to NCH₂CH₂N structural elements, as inferred from their chemical shifts. Since most of the $CH₂$ signals were anisochronous, the molecule must be chiral. Furthermore, signals for 8 aromatic protons were present, which could be partitioned into 2 sets of 4 contiguous protons (H-C(6) to $H-C(9)$ and $H-C(9')$ to $H-C(12')$) by selective decoupling experiments. An assignment to the 2 aromatic rings in 60 was achieved by NOE difference experiments: irradiation at 2.72 ppm $(CH₂(I'))$ led to a large NOE at 7.33 ppm $(H-C(12'))$. Irradiation at 2.41 ppm $(1 H of CH₂(2'))$ resulted in a somewhat smaller NOE at 7.65 ppm $(H - C(9)).$

In the broad-band-decoupled 100.6-MHz ¹³C-NMR spectrum (10% solution, CDCl₃), of 60 24 separate *s* were observed. From chemical-shift considerations and with the help of undecoupled and selectively decoupled spectra with high (decoupling of one-bond couplings) and low (decoupling of long-range couplings) decoupler power, all signals except the ones for C(l0a) and C(12'c) could be unambiguously assigned (see *Tabfe 5).* The latter were differentiated with the help of 'J(C,C) coupling constants, measured from satellite signals in **a** broad-band decoupled spectrum with a digital resolution of 0.2 Hz: the signal at 156.87 ppm with $^1J = 55.4$ Hz (coupling between an sp³- and sp²-hybridised C-atom [12]) was attributed to C(10a) and the signal at 143.13 ppm with 1 J = 78.4 Hz (coupling between 2 sp²-hybridised C-atoms across a double bond [12]) to C(12'c).

Finally, the broad-band decoupled $40.5-MHz$ ¹⁵N-NMR spectrum (10% solution, CDCl₃) of 60 showed 4 signals, the two at 251.3 and 76.3 ppm (referenced to liq. NH₃ [13]) being assigned to N(1) and N(4'), respectively. **A** differentiation between the signals at 154.3 and 146.0 ppm was achieved with a selective decoupling at 3.95 ppm $(3 H of CH₂(2)$ and $CH₂(3)$) with low power, resulting in appreciable decoupling at 154.3 ppm only, which, therefore, is assigned to $N(4)$ ($N(7')$ at 146.0 ppm).

Interestingly enough, the UV spectrum of 60 in 2_N HCl was practically the same as in MeOH showing that the enamine chromophore was unaffected, protonation occurring probably solely on N(1). In contrast, the UV spectrum of *59* in 2N HC1 showed transformation of the enamine chromophores to the ones of **Zb.**

The formation of **59** and **60** from **2** evidently involves the intermediacy of **63.** A $[\sqrt{4\pi},+\sqrt{\pi}]$ cycloaddition reaction of 2 molecules of 63, one as an azadiene and the other as the dienophile (C=C) would lead to **60.** Heterodienophiles have enjoyed wide-spread synthetic utility, but few dienes incorporating heteroatoms in the conjugated system have been widely exploited, although interest in this topic is increasing [141 [151. The formation of a **spiro[cyclohexadiene-tetrahydroquinoline] 66** from **64** oia **65** (Scheme 6) [161 [17] can be quoted as a precedent for our work, but it should be noted that our reactants and reagents are simpler. In contrast to the behaviour of such azadienes, it is reported that 2-vinylpyridine dimerises differently, although the HBr salt has been used [18].

3.2.6. *Some* Reduction Reactions. The 1 (2H)-isoquinolinone **2** was unaffected by NaBH, and LiAIH,; **38** was again resistant to NaBH,; but **44** was reduced by NaBH, in MeOH solution to 67 ⁽¹H-NMR: $d (J = 4 \text{ Hz})$ for H-C(11a)). Assuming a *trans*-ring junction for the azaquinolizidine moiety and placing $H-C(11a)$ in an axial conformation, the benzyl group at C(11) has to be located axially. Compounds **5** and **44** were unaffected by hot acid or alkali; **67** was resistant to the latter; hot acid, however, gave the ringopened product 68 ⁽¹H-NMR: 6.83 $(s, H-C(3)$ and 3.98 ppm $(s, PhCH₃)$).

4. Conclusion. - The condensation of homophthalic acid **(1)** with various diamines gives rise to fused $1(2H)$ -isoquinolinones. They have enamine character and display a host of interesting reactions with synthetic potentials that await to be explored fully.

Experimental Part

^{1.} *General.* **M.p.:** uncorrected. UV (λ_{max} in nm (log ε)) and IR spectra (cm⁻¹): *Beckman M 35* and *Perkin Elmer A4 337* spectrophotometers (nujol mulls), resp. 'H-NMR spectra: at 60 MHz on *Variun A60* and *EM 360* spectrometers, at 90 and 400 MHz on *Bruker WH 90* and *WM 400* spectrometers; δ_H rel. to TMS. ¹³C-NMR

(100.6 MHz) and ¹⁵N-NMR spectra (40.5 MHz): *Bruker WM 400* instrument; δ_C rel. to TMS as internal standard; δ_N measured with respect to external nitromethane and referenced to the 'liquid-ammonia scale' [13]. EI- and FD-MS: *Variun-MAT-CHS-DF* instrument equipped with a EI/FI/FD ion source. HR-MS: *CEC 21-1/08* mass spectrometer using photoplate recording.

2. *Synthesis of Fused 2(1* HI-lsoquinolinones **24,9-13,23,** *und25.* A mixture of homophthalic acid *(50* mmol) and diamine (100 mmol) was heated under reflux in o -dichlorobenzene (80 ml) for 6 h. The soln, was concentrated and diluted with hexane (200 ml). The precipitate was filtered off and crystallised. In the case of oily products, the crystalline salts were prepared. 2,3-Dihydroimidazo[1,2-b]isoquinolin-5(1H)-ones 2, 3, 9, and 10, 1,2,3,4-tetrahy*dro-6H-pyrimido[1,2-b]isoquinolin-6-ones 4-6,* **11,** and **12,** and *2.3.4,5-tetrahydro(l,3]diazepino[l.2-* blisoquino*lin-7(iH)-one* **(13)** are listed in *Table 1.*

Homophthahc acid (= *2-carboxyhenzeneucetic acid:* **1)** and *2-(nminomethyl)piperidine* **(22)** gave *1,2,3,4,4a,Shexuhydro-7H-pyrido(l',Z':3.4]imidaso[1,2- b]isoquinolin-7-one* **(23)** in 14% yield. M.p. 160-161" (from MeOH). IR: 1600, 1630. ¹H-NMR (CDCI₃): 5.25 (s, H-C(12)); 8.20 (m, H-C(8)). Anal. calc. for C₁₃H₁₆N₂O (240.32): C 74.97, H 6.71, N 11.66; found: C 74.54, **H** 7.00, N 11.60.

Similarly, *2-(2-~minoethyI)piperidine* **(24)** afforded *2.3,4.4a,S,fi-hexahydro-1H,8H-pyrido(1',2':3,4] pyrimido(l.2-b]isoquinolin-8-one* **(25)** in 85% yield. M.p. 140-142" (from EtOH). IR: 1640, 1620, 1600. 'H-NMR (CDCI₃): 5.62 (s, H-C(13)); 8.28 (m, H-C(9)). Anal. calc. for C₁₆H₁₈N₂O (254.32): C 75.56, H 7.13, N 11.02; found: C 75.85, H 7.40, N 10.90.

3. *Reactions of* **1** *with Other* Amines. With pentane-l,5-diamine, *2,2'-pentamethylenbis[isoquinoline-1,3(2H,4H)-dione]* **(14)** in 8% yield. M.p. 205-206" (from CHCI,/EtOH). IR: 1720, 1680, 1600. Anal. calc. for C,,H,,N,O, (390.42): C 70.75, H 5.68, N 7.18; found: C 70.30, **H** 5.97, N 6.95.

With 2-aminoethanol, *2-(2-hydroxyethyl)isoquinoline-I,3(2H,4H)-dione* **(18)** in 50% yield. M.p. 141-143". Anal. calc. for C₁₁H₁₁NO₃ (205.22): C 64.38, H 5.40, N 6.83; found: C 64.63, H 5.53, N 6.93.

With 2-aminoethanthiol, $2-(2-mercaptoethyl)$ isoquinoline-1,3(2H,4H)-dione (19) in 19% yield. M.p. 90-92°. Anal. calc. for $C_{11}H_{11}NO_2S$ (221.22): C 59.72, H 5.01, N 6.33; found: C 59.67, H 5.25, N 6.60.

With semicarbazide, *hi/isoquinolinel-l,1',3,3'(2H,Z'H,4H,I'H)-tetrone* **(21)** in 32 % yield. M.p. 308-310" (from DMF). IR: 1750, 1720, 1600. MS: 320 (M^+) . Anal. calc. for C₁₈H₁₂N₂O₄ (320.30): C 67.50, H 3.78, N 8.75; found: C 67.65, H 4.20, N 9.13.

With 2-carboxy-4-nitrobenzeneacetic acid (15) and ethylenediamine, 4,5-dihydro-2-(2'-methyl-5'-nitro*pheny1)-1H-imidazol* **(16)** in 25% yield. M.p. 132-134" (from CHCl,/hexane). IR: 3280, 3200, 1630. MS: 205 *(M⁺⁺).* ¹H-NMR *(CDCI₃): 2.55 <i>(s, CH₃); 3.75 <i>(s, CH₂CH₂)*; 4.90 *(br. s, NH)*; 7.33 *(d, H-C(3'))*; 8.05 *(dd, 11*) H-C(4')); 8.25 *(d,* H-C(6')).

4. Reaction **of2** *with Acyl Chlorides and Surfonyl Chlorides.* A soh. of **2** (5.6 g, 30 mmol), acyl or sulfonyl chloride (30 mmol), and Et₃N (3 g) was heated under reflux for $\frac{1}{2}$ h and the solvent distilled off. The residue was triturated with **H20** and filtered. The product was crystallised from appropriate solvent; *I-acyl- und l-sulfonyl-2,3 dihydroimiduzo(l.2-* b]isoquinolin-S(l H)-ones **2630** are listed in *Table 2.*

In the case of benzoyl chloride, the crude product (80%) from 2 (5 mmol) was chromatographed over 20 g of silica gel. Elution with CH₂Cl₂/EtOAc 1:1 gave in the earlier fractions *1-benzoyl-2,3-dihydroimidazo* [1,2-b]iso*quinolin-S(I* H)-one **(27;** 55%). HR-MS: 290.105 *(M").* The later fractions afforded the *lO-benzoyl-2,3-dihydroimidazol[1,2-b]isoquinolin-5(1H)-one* (35; 15%). M.p. 207-211°. Yellow crystals (from CH₂CI₂/Et₂O). IR: 3320, 1660, 1615. ¹H-NMR ((D₆) DMSO): 3.90 *(m, CH*₂); 4.30 *(m, CH*₂); 6.50–7.50 *(m, 8 arom)*; 8.23 *(m, H*-C(6)); 8.55 (br. *s*, NH). HR-MS: 290.105 *(M⁺⁺)*. Anal. calc. for C₁₈H₁₄N₂O₂ (290.105): C 74.47, H 4.86, N 9.65; found: C 74.72, H 5.04, N 9.32.

In the case of TsCl the crude product (40%) from 2 (5 mmol) was crystallised twice from $CH_2Cl_2/MeOH/Et_2O$ to afford the yellow *10-tosy1-2.3-diydroimidazo[1.2- b]isoquinolin-5(1 HI-one* **(36;** 10%). M.p. 270-273" (dec.). IR: 3380, 1660, 1600. 'H-NMR (CDcI,/(D@MSO): 2.33 **(s,** CH,); 3.85 *(m,* **CH,);** 4.20 *(m,* CH,); 7.0-8.2 *(m,* 8 arom. H); 7.50 (br. *s*, NH). HR-MS: 340.088 *(M⁺⁺)*. Anal. calc. for C₁₈H₁₆N₂O₃S (340.088): C 63.52, H 4.74, N 9.65; found: C 63.60, H 4.76, N 8.23.

The mother liquour was evaporated and the residue chromatographed over silica gel as above to afford */-tosy1-2,3-dihydroimiduzo/l,2-* blisoquinolin-S(*I* Hl-one **(30;** 25 %) as colourless crystals. M.p. 195-198" (from CH₂Cl₂/Et₂O). HR-MS: 340.090 *(M*⁺⁺).

p-Nitrobenzenesulfonyl chloride and 2 gave 2,3-dihydro-10-[(4'-nitrophenyl) thio]imidazo[1,2-b]isoquinolin-*S*(*1H*)-one (45; 10%), after chromatography over silica gel. M.p. 273-275° (dec.; from CH₂Cl₂/MeOH), blackening at *ca.* 258°. IR (KBr): 3450, 1660, 1615. ¹H-NMR ((D₆)DMSO): 3.67 (2 H-C(2)); 4.24 (2 H-C(3)); 7.14 $((D_6)DMSO): 41.70 (C(2)); 44.86 (C(3)); 70.63 (C(10)); 120.54 (C(5a)); 120.66 (C(9)); 121.93 (C(7)); 124.09$ $(H-C(7)); 7.30 (H-C(2')); 7.47 (H-C(9)); 7.50 (H-C(8)); 7.69 (NH); 8.05 (H-C(6)); 8.08 (H-C(3')).$ ¹³C-NMR (C(3'3')); 125.12 (C(2',6')); 127.19 (C(6)); 133.10 (C(8)); 140.35 (C(9a)); 144.73 (C(4')); 148.56 **(C(1'));** 153.79 (C(10a)); 160.05 (C(5)). MS: 339 *(M⁺⁺)*. Anal. calc. for C₁₇H₁₃N₃O₃S (339.26): C 60.17, H 3.86, N 12.39; found: C 60.22, H 4.13, N 12.14.

5. Reaction *of* 2 with Isocyanates and Isothiocyanate. A soh. of 2 (20 mmol) and isocyanate (20 mmol) in THF (150 ml) was heated under reflux for 6 h. The solvent was evaporated, and the colourless product crystallised; the *l-cnrbamoyl-2,3-dihydroimiduzo[* 1,2-b]isoquinolin-5(I Hj-ones 31-34 are presented in Table 2.

p-Chlorophenyl isocyanate and 3 afforded *lO-[N-(4-chIorophenyl]carbamoyl]-2,3-dihydro-I-methyIimidazo[l,2-b]isoquinolin-5(1* HI-one (47; 37%). M.p. 280-282" (from DMF). IR: 3220, 3160, 1660, 1630, 1600. 'H-NMR((D6)DMSO): 2.87 **(s,** CH,N); 3.30-3.70 *(m,* CH,); 3.804.20 *(m,* CH,); 6.90-7.85 *(m,* 7 arom. H); 8.0 *(m,* $H-C(8)$). Anal. calc. for $C_{19}H_{16}CIN_3O$, (353.81): C 64.50, H 4.56, N 11.88; found: C 64.71, H 4.69, N 12.13.

Phenyl isothiocyanate and 2 gave 2,3-dihydro-10-[N-(phenyl)thiocarbamoyl]imidazo[1,2-b]isoquinolin- $5(1H)$ -one (46; 42%). M.p. 221-222° (from aq. DMF). IR: 3200, 1640, 1610. ¹H-NMR ((D₆)DMSO): 3.55 *(m,* CH₂); 4.0 *(m, CH₂)*; 6.7–8.1 *(m, arom. H). Anal. calc. for* C₁₈H₁₅N₃OS (321.38): C 67.28, H 4.71, N 13.08; found: C 67.58, **H** 4.96, N 13.14.

6. Reaction *of* 2 with Dicyanodiamide. Dicyanodiamide (5 mmol) and 2. HCI (5 mmol) were fused together at 180° for 1 $\frac{1}{2}$ h. The melt was cooled and dissolved in H₂O and the soln. filtered. The filtrate was evaporated and the sticky residue crystallised from aq. EtOH to afford 10 - $\sqrt{N^2}$ -(diaminomethylidene)amidino]-2,3-dihydro*imidazo[1,2-b]isoquinolin-5(1H)-one hydrochloride* (37). Yield 61%. M.p. $> 300^{\circ}$. Anal. calc. for C₁₃H₁₅ClN₆O (306.77): C 50.8, H 4.48, N 27.4; found: C 50.37, H 5.06, N 27.04.

7. Alkylations *of* 2 and **5.** A soln. of 2 (10 mmol) and benzyl bromide (10 mmol) in CHCI, (50 ml) containing anh. K_2CO_3 (10 mmol) was heated under reflux overnight. The mixture was filtered and the filtrate evaporated. The residue was crystallised from CHCl₁/EtOH to afford *10-benzyl-2,3-dihydroimidazo[1,2-b]isoquinolin-5(1H)one* (38; 72%). M.p. 243-245°. UV (MeOH): 230 (4.45), 298 (infl., 4.19), 305 (4.23), 377 (3.63). UV (2NHCl): 234 (4.02), 240 (4.00), 267 (4.03). IR: 3260, 1660. 'H-NMR ((DJDMSO): 3.57 (br. **s,** NH); 3.62 *(m,* CH,); 3.83 (s, PhCH₂); 4.05 *(m, CH₂)*; 6.70-7.50 *(m, 8 arom. H)*; 7.97 *(m, H-C(8)).* MS: 276 *(M⁺⁺).* Anal. calc. for C₁₈H₁₆N₂O (276.33): C 78.23, H 5.84, N 10.14; found: C 78.06, H 6.11, N 10.51.

Similarly, *10-allyl-2,3-dihydroimidazo[1,2-b]isoquinolin-5(1H)-one* (39; 25%) was obtained. M.p. 200-201° (from EtOH). IR: 3220, 1650, 1600. ¹H-NMR (CDCI₃): 3.30 *(m, CH₂CH*=CH₂); 3.68 *(m, CH₂)*; 4.25 *(m, CH₂)*; 4.75, 5.25 *(m,* CH,CH=CH,); 5.83 *(m,* CH,CH=CH,); 6.9-7.77 *(m,* 3 arom H); 8.30 *(m,* H-C(8)).

Benzyl bromide (10 mmol) and 5 (10 mmol) heated in CHCl₃ (50 ml) under reflux overnight, afforded 1,2,3,4-tetruhydro- I-methyl-I *I-benzyl-6H-pyrimido[l,2-* b]isoquinolin-6-one hydrobromide (44. HBr; 98 *YO).* M.p. 250-251° (from MeOH/Et₂O). **IR: 1710, 1620.** Anal. calc. for C₂₀H₂₁BrN₂O (385.38): C 62.34, H 5.49, N 7.27; found: C 62.17, H 5.71, N 7.10.

Basification gave 44. M.p. 140-141° (from aq. EtOH). ¹H-NMR (CDCl₃): 2.0 *(t, CH₂(3))*; 2.83 *(s, CH₃N)*; 3.15 (t. CH,(2)); 4.15 (s, PhCH,); 4.16 (t, CH,(4)); 7.0-7.4 *(m,* 3 arom. H); 7.13 (s, C,H,); 8.45 *(m,* H-C(8)).

Excess MeI and 5 afforded 2,3,4,11-tetrahydro-1,11-dimethyl-6-oxo-6H-pyrimido[1,2-b]isoquinolinium iodide (42; 72%). M.p. 254-255° (from EtOH/Et₂O). IR: 1700, 1620, 1600. Anal. calc. for C₁₄H₁₇IN₂O (356.27): C 47.20; H 4.81, N 7.86; found: C 47.03, H 5.06, N 7.58.

8. Reaction *of* 2 with Acrylic Acid and Acrylonitrile. A mixture of 2 (25 mmol) and acrylic acid (25 mmol) in EtOH (50 ml) was heated under reflux for $\frac{1}{2}$ h. The precipitate was collected and crystallised from AcOH to give 5,6-dihydro-l H,8H-pyrido(3,2,1- Im] (imidazo[l,2- b]isoquinoline)-3(2H) ,8-dione **(51;** 85 %). M.p. 286-288". IR: 1700, 1650, 1610. 'H-NMR (CF,COOH): 3.22 *(m* 2 H-C(1), 2 H-C(2)); 4.2-5.0 *(m,* 2 H-C(5), 2 H-C(6)); 7.4-8.15 *(m, 3 arom H); 8.52 (m, H-C(11)).* Anal. calc. for C₁₄H₁₂N₂O₂ (240.26): C 70.0, H 5.0, N 11.66; found: C 70.07, H 5.10, N **1** I .9 1.

With acrylonitrile, 10-(2-cyanoethyl)-2,3-dihydroimidazo[1,2-b]isoquinolin-5-(1H)-one (52) was obtained in 25% yield. M.p. 227-228° (dec.; from MeOH). Anal. calc. for $C_{14}H_{13}N_3O$ (239.27): C 70.27, H 5.48, N 17.56; found: *C* 70.43, H 5.85, N 17.16.

9. Reaction *of* **2** and 4 with *Maleic* Acid. Treatment of 2 (25 mmol) and maleic acid (25 mmol) yielded *2,3.5,6-tetruhyilro-3,8-dio,uo- I* H *,8* H-pyrido(3 \$2, *I* - lm/ (imidazol *I* ,2- b]istqiainoline) - I *-curboxylic* acid (48; 70 *YO).* $M.p. > 320^\circ$. IR: 1710, 1700, 1680, 1610. ¹H-NMR ((D₆)DMSO): 2.75-3.10 *(m, 2 H-C(2))*; 3.80-4.70 *(m,* 284 (M^+). Anal. calc. for C₁₅H₁₂N₂O₄ (284.27): C 63.38, H 4.26, N 9.86; found: C 63.07, H 4.54, N 9.63. H-C(l), 2 H-C(5), 2 H-C(6)); 7.40 *(m,* H-C(I2)); 7.50-7.80 *(m,* H-C(10), H-C(I **1));** 8.20 *(m,* H-C(9)). MS:

Maleic acid and 4 similarly afforded 2,3,6,7-tetrahydro-3,9-dioxo-1H,5H,9H-pyrido[3,2,1-mn](pyrimido-*[1,2-b]isoquinoline)-l-carboxy/ic ncid* **(50;** 15%). M.p. 234-235" (from EtOH). IR: 1710, 1640, 1600. Anal. calc. for $C_{16}H_{14}N_2O_4$ (298.29): C 64.42, H 4.73, N 9.39; found: C 64.75, H 5.10, N 9.22.

10. Reaction *of* 2 with Propiolic Acid. Propiolic acid (28 mmol) and 2 (20 mmol) were heated together in EtOH (100 ml) under reflux for 10 h. The mixture was cooled and the precipitated yellow solid filtered off. Crystallisation from DMF gave 2,3,5,6-tetrahydro-1x-methyl-3B-(1,2,3,5-tetrahydro-5-oxoimidazo[1,2-b]isoquinolin-10-yl)-*^IH,XH-benzo[c]imidazo[1,2,3-iJ]naphthyridin-X-one* **(53;** 90%). M.p. 285-288" (dec.). UV (MeOH): 226 (4.66), 302 (4.51), 372 (3.97). IR: 3380, 1680, 1620. MS: 424 *(M").* Anal. calc. for C2,H2,N402 (424.49): C 73.56, H 5.70, N 13.20; found: C 73.04, H 5.74, N 12.97.

I I. *Reaction of2 wifh Formaldehyde.* A mixture of 2 **(3.8** g), formalin (4 ml), and morpholine (3.6 g) was heated in dioxane (200 ml) at 70" for 2 h. After initial dissolution, a light yellow solid separated. After cooling, the precipitate was filtered off and crystallised from DMF to give 1.8 g of *10,10'-methylenebis[2,3-dihydroimidazo(l,2* b]isoquinolin-S(l H)-one] (59). M.p. 302-306" (dec.). UV (MeOH): 230 (4.73), 298 (4.45), 303 (4.45), 380 (3.99). IR: 3400, 3200, 1660, 1600. MS: 384 (M^+). Anal. calc. for $C_{23}H_{20}N_4O_2$ (384.42): C 71.86, H 5.24, N 14.58; found: *C* 71.85, H 5.46, N 14.69.

The dioxane filtrate was evaporated and the residue triturated with $Et₂O$. The solid was crystallised from DMF to afford 2.0 g of 2',3,3',5',6',10-hexahydrospiro[imidazo[1,2-b]isoquinoline-10,3'-l'H,8'H-pyrido[3,2,1-*Im](imidazo[1,2-b]isoquinoline)]-5(2H),8'-dione* **60**. M.p. 294-296° (dec.), depressed by admixture with 59. After crystallisation from CHCI,, m.p. 273-275" (dec.). UV (MeOH): 230 (4.51), 298 (infl., 4.19), 306 (4.22), 380 (3.66). IR: 1660, 1630, 1610, 1590. HR-MS: 396.159(M^+). Anal. calc. for $C_{24}H_{20}N_4O_2$ (396.159): C 72.71, H 5.08, N 14.13, O 8.07; found: C 72.30; H 5.10, N 13.70, O 8.40.

12. *Reduction of* **44** *with NaBH₄</sub>. A soln. of* **44** (5 g) in MeOH (50 ml) was treated with NaBH₄ (0.5 g) in small portions. After 1 h, *H₂O* (100 ml) was added and the product extracted with Et₂O (200 ml). Evaporation of the Et,O layer and trituration with hexane gave a solid. This was crystallised from the same solvent to give 3.6 g of *1,2,3,4,1 l,lla-hexahydro-l-methyl-ll-benzyl-6 H-pyrimido[l,Z-* b]isoquinolin-6-one (67). M.p. 115-1 16". 'H-NMR (CDCI,): 1.5-2.4 *(m,* 2 H-C(3)); 2.30 (s, CH,N); 2.30-3.50 *(m,* 2 H-C(3), H-C(ll), PhCH,); 4.0 *(d,* H-C(I la)); 4.304.70 *(m,* 2 **H-C(4));** 6.60 *(m,* H-C(10)); 6.70-7.40 *(m,* 7 arom. H); 8.03 *(m,* H-C(7)). Anal. calc. for C20H22N20 (306.40): **C** 78.40, H 7.24, N 9.14; found: C 78.59, H 7.13, N 8.96.

13. *Ring Cleuuuge* of67. A soln. of 0.5 g of 67 in 10 mi of 2N HC1 was heated at 100" for 4 h. The soln. was evaporated. The residue was crystallised from EtOH/Et₂O to give 0.25 g of 2-[3-(methylamino)propyl]isoquinolin-*I*(2H)-one hydrochloride 68. HCl. M.p. 150-151°. Anal. calc for C₂₀H₂₃CIN₂O · H₂O (360.86): C 66.56, H 6.98, N 7.76; found: C 66.56, H 7.05, N 8.20. Data of oily free base: ¹H-NMR (CDCI₃): 1.90 *(quint., CH*₂CH₂CH₂NH); 2.33 (s, CH₃N); 2.57 *(t, CH₂CH₂CH₂NH)*; 3.98 *(s, PhCH₂)*; 4.00 *(t, CH₂CH₂CH₂CH₂NH)*; 6.83 *(s, H-C(3))*; 7.20 *(s,* C,H,); 7.10-7.60 *(m,* 3 arom. H); 8.45 *(m,* H-C(8)). **MS:** 306 *(M+'),* 248 (major fragment, M^+ – CH₃NHCH₂CH₂).

REFERENCES

- [1] K. Nagarajan, V. Ranga Rao, R. K. Shah, *Indian J. Chem.* **1970,** 8, 663.
- [2] K. Kubo, N. Ito, Y. Isomura, **I.** Sozu, H. Homma, **M.** Murakami, *Chem. Pharm. Bull.* 1979,27,2372.
- [3] H. Homma, T. Nomura, **Y.** Maeno, K. Kubo, to *Yumanuchi Pharmaceutical* Co. *Ltd.,* Jpn. Kokai Tokkyo Koho, Nov. 14, 1978, 78, 130, 435; *(CA*: 1979, 90, 127546w).
- [4] H. Grinberg, **S.** Lamdan, H.C. Gaozza, *Org. Prep. Proc. Inf.* 1976,8, 287.
- [5] E. Schefczik, *Liebigs Ann. Chem.* 1969, *729,* 83.
- [6] E. Schefczik, to *BASFAG,* Ger. Offen. 1,960,099; June 3, 1971 *(CA:* 1971, 75,63760s).
- 171 A. G. Cook, 'Enamines: Synthesis, Structure, and Reactions', Marcel Dekker, New York, 1969.
- **[8] S.** F. Dyke, 'The Chemistry of Enamines', Cambridge University Press, Cambridge, 1973.
- [9] P. W. Hickmott, *Tetrahedron* 1982,3X, 1975, 3343.
- [lo] V.G. Granik, *Russ. Chem. Rev.* 1984, **53,** 383.
- [I 11 P. W. Hickmott, *Tefrahedron* 1984, *40,* 2989.
- [I21 Victor Wray, 'Progress in Nuclear Magnetic Resonance', Eds. W.J. Emsley, J. Feeney, and L.H. Sutcliffe, Pergamon Press, Oxford, 1979, Vol. 13, Part 3, pp. 177-256.
- 1131 P. R. Srinivdsan, R. L. Lichter, *J. Magn. Reson.* 1977,28, 227.
- [I41 A. McKillop, A. **J.** Boulton, 'Comprehensive Heterocyclic Chemistry', Eds. A. **J.** Boulton and A. McKillop, Pergamon, Oxford, 1984, Vol. 2, p. 81.
- [15] M. Tutonda, D. Vanderzdnde, J. Vekemans, **S.** Toppet, *G.* Hoornaert, *Tetrahedron Lett.* 1986, 27, 2509.
- [I61 G. Jones, 'Comprehensive Heterocyclic Chemistry', Eds. A. **J.** Boulton and A. McKillop, Pergamon, Oxford, 1984, Vo1.2, p. 442.
- [I71 **Y.** Ito, **S.** Miyata, M. Nakatsuka, T. Saegusa, *J. Am. Chem. Soc.* **1981,** *103,* 5250.
- [18] E. F. V. Scriven, 'Comprehensive Heterocyclic Chemistry', Eds. A. J. Boulton and A. McKillop, Pergamon, Oxford, 1984, Vol. 2, p. 182.